

In Silico Molecular Docking Studies On Novel Analogues Of **Diphenyl Phosphonates As Dna Gyrase Inhibitors For Tuberculosis.**

Dixit².. Shahanabi^{*1}, Sriharsha.S. N¹., HabeelaJainab. N¹., Sheshagiri R Durgesh Bidye².

¹ Department of Pharmaceutical Chemistry, Hillside College of Pharmacy and Research Centre, Raghuvanahalli, Bengaluru-560062, Karnataka, India. ²Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and

> Research, Mysuru-570015, Karnataka, India. -----

Submitted: 15-07-2023

Accepted: 25-07-2023 _____

ABSTRACT

Tuberculosis (TB) is caused by the bacteria Mycobacterium tuberculosis that most often affect the lungs. Tuberculosis is a curable and preventable disease. Drug-susceptible TB disease is treated with a standard 4-month or 6-month course of four antimicrobial drugs. TB is spread from person to person through the air. When people with lung TB, cough, sneeze or spit, they propel the TB germs into the air. A person needs to inhale only a few of these germs to become infected. DNA gyrase (topoisomerase II) and the other topoisomerases (I and III) play a crucial role in maintaining the nucleoid structure and the compact supercoiled domains of the chromosome. The DNA GYRASE enzyme plays a very important role in the Mycobacterium tuberculosis. These enzymes help with the winding and unwinding of the DNA that occurs during replication and transcription. Tuberculosis DNA gyrase is thus a validated target for anti- tubercular drug discovery; its inhibition results in high mycobactericidal activity. Inhibitors of this enzyme are also active against nonreplicating, persistent mycobacteria, which might be important for shortening the duration of TB therapy. The mechanism of inhibition can be related to the catalytic mechanism of DNA GYRASE action or include mechanism unrelated to stearic blockage of the active site or its neighbourhood. DNA GYRASE inhibitor drugs block the action of this enzymes. In this study, we have selected analogues Cyclic of DiphenylPhosphonates as DNA gyrase Inhibitors.In silico docking studies were carried out using BIOVIA Discovery Studio. The results showed that most of the chemical compounds binds effectively with DNA GYRASE enzyme. Among the docked compounds, the compound 18, compound 24, shows higher - cdocker energy and -

cdocker interaction energy than the standard drug whereas the other analogues showed comparatively lower scores. This study will be the basement support for the synthesis of more substituted compounds or molecules with similar structure towards the tuberculosis therapy.

KEYWORDS: Tuberculosis, DNA GYRASE enzyme, Cyclic DiphenylPhosphonates, analogues, molecular docking.

INTRODUCTION: I.

Tuberculosis (TB) is an ancient disease that has affected mankind for more than 4,000 years. ^[1] It is a chronic disease caused by the bacillus Mycobacterium tuberculosis. TB usually affects the lungs but it can also affect other parts of the body, such as brain, intestines, kidneys, or the spine. Symptoms of TB depend on where in the body the TB bacteria are growing. In the cases of pulmonary TB, it may cause symptoms, such as chronic cough, pain in the chest, hemoptysis, weakness or fatigue, weight loss, fever, and nightsweats. It spreads from person to person through air, when a person with active TB disease coughs or sneezes and someone else inhales the expelled droplets, which contain TB bacteria.^[2] Infections are among the major causes of human morbidity and mortality. The pharmaceutical industry is unable to keep up with the growing need for effective novel antibacterial drugs. The main reason for this situation is the rapid bacterial adaptation to antibiotics, which results in resistance development after antibacterial drugs are introduced into clinical use. Antibiotic resistance has been deemed as one of the most threats to global public health by the World Health Organization. ^[3]The increasing amount of genomic and molecular information is the basis for understanding higher-order biological

systems, such as the cell and the organism, and their interactions with the environment, as well as for medical, industrial and other practical applications.^[4]

Bacterial DNA gyrase, a type II DNA topoisomerase found in all bacteria, is a proven target for antibacterial chemotherapy. It is the only type II enzyme to retain its historical name. In contrast to other type II topoisomerases, DNA gyrase is the only enzyme that is capable of underwinding actively (i.e., negatively supercoiling) the double helix.^{[5][6]}DNA gyrase was the first type II topoisomerase to be discovered and was first reported in 1976.DNA gyrase play a crucial role in maintaining the nucleoid structure and the compact supercoiled domains of the chromosome. This enzyme helps with the winding and unwinding of the DNA that occurs during replication and transcription. So here we have selected DNA gyrase. DNA gyrase is thus a validated target for antitubercular drug discovery; its inhibition results in high mycobactericidal activity. Inhibitors of this enzyme are also active against non-replicating, persistent mycobacteria, which might be important for shortening the duration of TB therapy. DNA gyrase has long been known as an attractive target for antibacterial drugs. Two classes of antibiotics have clinically validated DNA gyrase as a viable target quinolones and aminocoumarins. Fluoroquinolones inhibit DNA gyrase by interfering with the DNA cleavage/resealing function of the enzyme It is one of the most extensively researched and verified targets for the creation of novel antibacterial therapies. This enzyme is a good target for the development of antibacterial therapeutics with selective toxicity due to its lack in the mammalian organism and its critical function in the bacterial DNA replication cycle. Gyrase A and Gyrase B are the two subunits that make up the catalytically active heterotetrameric enzyme (i.e. A2B2). While the B subunit (DNA gyrase B) has ATPase activity and supplies enough energy for the DNA supercoiling, the A subunit is responsible for breaking and rejoining the double DNA strand. DNA gyrase is an essential bacterial enzyme that catalyses the ATP-dependent negative supercoiling of double-stranded closed-circular DNA. Gyrase belongs to a class of enzymes known as topoisomerases that are involved in the control of topological transitions of DNA. Tuberculosis DNA gyrase is thus a validated target for anti-tubercular drug discovery. Inhibitors of this enzyme are also active against non-replicating mycobacteria, which

might be important for the eradication of persistent organisms.^{[7][8]}

Molecular Docking is an effective and competent tool for insilico screening. Docking is a computational procedure of searching for an appropriate ligand that fits both energetically and geometrically the protein's binding site. In other words, it is a study of how two or more molecules e.g. ligand and protein, fit together.Molecular docking has become an increasingly important tool for drug discovery. In this review, we present a brief introduction of the available molecular docking methods, and their development and applications in drug discovery. The relevant basic theories, including sampling algorithms and scoring functions, are summarized. ^[9]Molecular docking has been proved very efficient tool for novel drug discovery for targeted protein. Among different types of docking, protein-ligand docking is of special interest, because of its application in medicine industry. Protein-ligand docking refers to search for the accurate ligand conformationswithin a targeted protein when the structure of proteins is known. The main objective of molecular docking is to attain ligandreceptorcomplex with optimised conformation and with the intention of possessing less binding free energy.^[10] Characterization of the binding behavior plays an importantrole in rational design of drugs as well as to elucidate fundamental biochemical processes.Molecular docking research focuses on computationally simulating the molecular recognition process. It aims to achieve an optimized conformation for both the protein and ligand and relative orientation between protein and ligand such that the free energy of the overall system is minimized.^{[10][11]} Docking combined with a scoring function can be used to quickly screen large databases of potential drugs in silico to identify molecules that are likely to bind to protein target of interest.^{[12][13]}The aim of the current study is focused on determining the binding effectiveness and potent compounds of various Diphenylphosphonate analogues against the DNA gyrase enzyme.

Material and Methods

ChemDraw software 20.1.1.125 (PerkinElmer Informatics, Inc., USA), OpenBabel 2.4.1.software (Openeye scientific, New Mexico.), BIOVIA Discovery Studio 2020 v20.1.0.19295 (Dassault system, San Diego, CA, USA).

Molecular Docking Study

The two dimensional (2-D) structures of all molecules were drawn using ChemDraw software 20.1.1.125 and saved in .cdx format. The interactions between all molecules and protein DNA gyrase (PDB ID: 1KZN)^{[14] [9].}All drugs structures were converted to .sdf MDL MOL format from .cdx file using OpenBabel 2.4.1. Software (Openeye scientific, New Mexico.) as single file. Ligand preparation was performed by minimizing energy for docking. DNA gyrase (PDB ID: 1KZN) was downloaded and prepared. The preparation of protein was based on selection of chain containing amino acids for respective cocrystal (CLOROBIOCIN) for chain A and water molecules were removed. After protein preparation, binding site was defined with co-crystal. The prepared ligands were docked against prepared protein with CDOCKER inbuilt algorithm using BIOVIA Discovery Studio 2020. The interactions resulted in binding energy (kcal/mol), 2D and 3D interactions between respective ligand and protein ^{[15].}

TABLE 1: STRUCTURES OF PROPOSED ANALOGUES OF DIPHENYL PHOSPHONATES

Docked Molecules	IUPAC Name	Structures
Standard molecule		
	CLOROBIOCIN	
M 1	Diphenyl (1-chloro-1,2,3,4- tetrahydropyridin-3- yl) phosphonate	

M 2	Diphenyl (1-fluoro-1,2,3,4- tetrahydropyridin-3-yl) phosphonate	F— Ń
M 3	Diphenyl (1-amino-1,2,3,4- tetrahydropyridin-3-yl) phosphonate	
M 4	Diphenyl (1-bromo-1,2,3,4- tetrahydropyridin-3-yl) phosphonate	
M 5	Diphenyl (1-hydroxy-1,2,3,4- tetrahydropyridin-3- yl)phosphonate	
M 6	3-(diphenoxyphosphoryl)- 1,2,3,4-tetrahydropyridine-1- carboxylic acid	

M 7	Diphenyl (1-sulfanyl-1,2,3,4- tetrahydropyridin-3- yl)phosphonate	
M 8	Diphenyl (1-methyl-1,2,3,4- tetrahydropyridin-3- yl)phosphonate	
M 9	Diphenyl (1-cyano-1,2,3,4- tetrahydropyridin-3- yl)phosphonate	
M 10	2-{[3-(diphenoxyphosphoryl) -1,2,3,4-Tetrahydropyridin-1- yl] amino}acetic acid	

M 11	2-{[3- (diphenoxyphosphoryl)- 1,2,3,4- tetrahydropyridin-1- yl]amino}propanoic acid	
M 12	2-{[3- (diphenoxyphosphoryl)- 1,2,3,4- tetrahydropyridin-1-yl]amino}- 3-hydroxypropanoic acid	
M 13	2-{[3- (diphenoxyphosphoryl)- 1,2,3,4- tetrahydropyridin-1-yl]amino}- 3-sulfanylpropanoic acid	

14	2-{[3- (diphenoxyphosphoryl)- 1,2,3,4- tetrahydropyridin-1-yl]amino}- 3-methylbutanoic acid	
M 15	2-{[3- (diphenoxyphosphoryl)- 1,2,3,4- tetrahydropyridin-1-yl]amino}- 4-methylpentanoic acid	
M 16	2-{[3- (diphenoxyphosphoryl)- 1,2,3,4- tetrahydropyridin-1-yl]amino}- 4-(methylsulfanyl)butanoic acid	
M 17	1-[3-(diphenoxyphosphoryl)- 1,2,3,4-tetrahydropyridin-1- yl]pyrrolidine-2-carboxylic acid	

M 18	2-{[3- (diphenoxyphosphoryl)- 1,2,3,4- Tetrahydropyridin-1- yl]amino}-3-(4- hydroxyphenyl)propanoic acid	
M 19	5-carbamimidamido-2-{[3- (diphenoxyphosphoryl)- 1,2,3,4- tetrahydropyridin-1- yl]amino}pentanoic acid	
M 20	6-amino-2-{[3- (diphenoxyphosphoryl)- 1,2,3,4- tetrahydropyridin-1- yl]amino}hexanoic acid	
M 21	2-{[3- (diphenoxyphosphoryl)- 1,2,3,4- tetrahydropyridin-1-yl]amino}- 3-(1H-imidazol-4-yl)propanoic acid	

M 25	2-{[3- (diphenoxyphosphoryl)- 1,2,3,4- tetrahydropyridin-1-yl]amino}- 3-phenylpropanoic acid	
M 26	Diphenyl {1- [(aminooxy)methyl]-1,2,3,4- tetrahydropyridin-3- yl}phosphonate	
M 27	Diphenyl [1-(aminomethyl)- 1,2,3,4-tetrahydropyridin-3- yl]phosphonate	
M 28	Diphenyl (1-ethyl-1,2,3,4- tetrahydropyridin-3- yl)phosphonate	

M 29	Diphenyl (1-nitro-1,2,3,4- tetrahydropyridin-3- yl)phosphonate	
M 30	Diphenyl [1- (trifluoromethyl)-1,2,3,4- tetrahydropyridin-3- yl]phosphonate	
M 31	Diphenyl (1-acetamido- 1,2,3,4-tetrahydropyridin-3- yl)phosphonate	
M 32	Diphenyl (1-methoxy- 1,2,3,4-tetrahydropyridin-3- yl)phosphonate	
M 33	Diphenyl (1-acetyl-1,2,3,4- tetrahydropyridin-3- yl)phosphonate	

M 34	Amino diphenyl phosphate	
M 35	2-ethylhexyl diphenyl phosphate	
M 36	Diphenylphosphonate	
M 37	Diphenyl (propan-2- yl)phosphonate	
M 38	Diphenyl (4- methylphenyl)phosphonate	

M 39	Diphenyl methylphosphonate	
M 40	Diphenyl (1,2- dihydroxypropyl)phosphonate	
M 41	Diphenyl (1-amino-2- methylpropyl)phosphonate	
M 42	Diphenyl (aziridin-1- yl)phosphonate	
M 43	Diphenyl (thiomorpholin-4- yl)phosphonate	

M 44	Diphenyl {3- [methoxy(methyl)amino]-2- oxopropyl}phosphonate	
M 45	2-{[3- (diphenoxyphosphoryl)- 1,2,3,4- tetrahydropyridin-1-yl]amino}- 3-methylpentanoic acid	
M 46	4-carbamoyl-2-{[3- (diphenoxyphosphoryl)- 1,2,3,4- tetrahydropyridin-1- yl]amino}butanoic acid	

M 47	3-carbamoyl-2-{[3- (diphenoxyphosphoryl)- 1,2,3,4- tetrahydropyridin-1- yl]amino}propanoic acid	
M 48	2-{[3- (diphenoxyphosphoryl)- 1,2,3,4- tetrahydropyridin-1- yl]amino}butanedioic acid	

II. RESULTS AND DISCUSSION:

Standard (Clorobiocin) and the proposed 48 molecules were docked against the target DNA gyrase. Among the various docked compounds, molecule 18 and molecule 24 showed good binding energy, shorter bond length and potential affinity towards the target. The larger bond distances may lead to unstable protein-ligand complex, shorter bond length is stable. The binding energy values for the interaction of amino acids of DNA gyrase (PDB ID : 1KZN) and atoms or functional groups of co crystal (Clorobiocin), molecule 24 and molecule 18 were -144.463 (kcal/mol), -110.739 (kcal/mol) and -97.6299 (kcal/mol) respectively. The nature of the bond, bond length and the interaction between the atoms or functional groups of the standard and potential molecules with the amino acids in the target is elaborated in the Table 2.

TABLE 2: INTERACTION RESULTS FOR DOCKING STUDIES OF THE STANDARD AND
POTENTIAL MOLECULES

Interaction	Binding	Interacting amino acids and	Nature of	Bond	
	Energy	atoms	Bond	length(Å)	
	(kcal/mol)				
1KZN-Cocrystal	-144.463	ASN/A: 46 and 5^{th} position	Hydrogen	1.95 and	
CLOROBIOCIN		OH of 2,2 dimethyl oxane	Bond	2.86	
		ring.			
		ASP/A: 73 and H of methyl	Hydrogen	1.96	
		pyrrole ring.	Bond		
		ARG/A: 136 C=O of 2-oxo-	Alkyl	1.97	
		2Hchromen-7-yl)oxy] ring.	Bond		
		PRO/A: 79 and 2-oxo-	Alkyl	4.60 and	
		2Hchromen-7-yl)oxy] ring.	Bond	5.49	

		ILE/A: 90 methyl group of oxane ring.	Alkyl Bond	4.02	
		VAL/A: 167 and H of methyl pyrrole ring.	Alkyl Bond	5.39	
		VAL/A: 71 and CH_3 of methyl pyrrole ring.	Alkyl Bond	4.37	
		ALA/A: 47 and H of methyl pyrrole ring and methyl in methyl pyrrole ring.	Alkyl Bond	4.32 4.46	and
		ARG/A: 76 and 2-oxo- 2Hchromen-7-yl)oxy] ring.	Pi Cation	4.91 5.43	and
1KZN- MOLECULE Diphenoxyphosphoryl	-97.6299	ASN/A: 46 and H of 1,2,3,4tetrahydropyridin-1-yl amino ring.	Hydrogen Bond	2.78	
tetrahydropyridin-1-yl amino}-3-(4-		ALA/A: 96 and OH of 4hydroxyphenyl ring.	Hydrogen Bond	2.09	
hydroxyphenyl)propanoic acid		GLU/A: 50 H of 1,2,3,4tetrahydropyridin-1-yl amino ring.	Hydrogen Bond	2.68	
		PRO/A: 79 –O of diphenoxyphosphoryl ring.	Hydrogen Bond	2.56	
		ILE/A: 90 of hydroxyphenyl ring.	Alkyl Bond	4.71	
		ILE/A:78 of 1,2,3,4tetrahydropyridin-1-yl amino ring.	Alkyl Bond	4.97	
		ARG/A:136 of diphenoxyphosphoryl ring.	Pi Cation	4.31	
1KZN- MOLECULE Diphenoxyphosphoryl	-110.739	ASN/A: 46 and –NH of 1,2,3,4-tetrahydropyridin-1- yl amino ring.	Hydrogen Bond	2.29	
1,2,3,4tetrahydropyridin- 1-yl amino]-3-(1H-indol-		ASP/A: 49 and –OH of 1Hindol-3-yl)propanoicacid.	Hydrogen Bond	1.99	
3yl)propanoicacid		ARG/A: 76 and –O of diphenoxyphosphoryl ring.	Hydrogen Bond	2.90	
		GLU/A: 50 and 1,2,3,4tetrahydropyridin ring.	Hydrogen Bond	2.48	
		PRO/A: 79 and	Hydrogen	2.65	
		diphenoxyphosphoryl ring.	Bond		
		ILE/A:78 and tetrahydropyridin ring.	Alkyl Bond	4.74	
		ILE/A:90 and 1H-indol ring and diphenoxyphosphoryl ring.	Alkyl Bond	4.33 4.19 5.44	and and

				ALA/A:86	and hosphoryl ring	Alkyl Bond	5.41
				uphenoxyp	nosphoryr mg.	Dona	
TABLE 3:BINDING ENERGIES OF ALL PROPOSED STRUCTURAL ANALOGUES							
Name	Visible	Tagged	Visibili ty Locke d	Binding Energy	CDOCKER_EN ERGY	CDOCK RACTIC GY	ER_INTE N_ENER
M24	No	No	No	-110.739	37.2655	50.4208	
M18	No	No	No	-97.6299	37.4815	43.8713	
M11	No	No	No	-88.0013	32.0201	40.9319	
M35	No	No	No	-84.3862	40.1892	35.431	
M10	No	No	No	-83.8267	33.3277	42.0369	
M22	No	No	No	-81.4587	36.9936	45.1102	
M17	No	No	No	-80.7267	15.8097	44.5767	
M46	No	No	No	-79.6799	36.8147	47.6684	
M12	No	No	No	-77.7852	33.7097	41.7569	
M19	No	No	No	-75.7196	36.8612	41.38	
M45	No	No	No	-75.0845	32.6397	44.3096	
M16	No	No	No	-74.4617	30.635	44.5479	
M21	No	No	No	-71.2443	36.1886	46.1064	
M38	No	No	No	-70.8127	26.7856	32.5771	
M15	No	No	No	-70.7009	37.6626	45.2282	
M13	No	No	No	-68.2369	33.451	42.6848	
M27	No	No	No	-67.3319	26.7424	35.8539	
M41	No	No	No	-66.7563	27.6983	28.6142	
M31	No	No	No	-65.3051	26.4077	39.5265	
M47	No	No	No	-64.397	32.4826	36.4856	
M36	No	No	No	-61.8855	13.2219	25.0822	
M23	No	No	No	-61.6811	30.2301	40.4489	
M28	No	No	No	-61.3977	25.0356	35.3721	
M4	No	No	No	-60.3064	22.153	32.7238	
M2	No	No	No	-55.4996	18.7246	29.3888	
M6	No	No	No	-53.4774	25.2212	34.3011	
M14	No	No	No	-52.9746	32.7579	43.0139	
M1	No	No	No	-52.6619	22.6008	33.097	
M25	No	No	No	-51.6252	33.6061	40.7493	
M43	No	No	No	-49.1354	21.8769	29.9137	
M37	No	No	No	-48.4525	26.1048	26.6226	
M3	No	No	No	-48.1899	22.4329	32.7271	
M33	No	No	No	-47.1488	24.8975	34.8378	
M7	No	No	No	-46.7204	19.1637	29.4622	

DOI: 10.35629/7781-0804935956

M32	No	No	No	-44.7538	24.1603	32.8243
M29	No	No	No	-42.5084	19.6157	33.9592
M39	No	No	No	-42.4032	22.194	25.5504
M5	No	No	No	-41.6085	23.3227	33.9375
M48	No	No	No	-38.5954	42.0457	42.1312
M26	No	No	No	-37.7394	24.56	35.6351
M44	No	No	No	32.4925	37.422	36.5127
M40	No	No	No	-31.9729	22.6558	30.5718
M8	No	No	No	-26.4893	19.7041	29.5512
M9	No	No	No	-24.4124	19.6205	30.4618
M42	No	No	No	-23.4466	-64.4561	26.7739
M30	No	No	No	-2.2237	19.3107	30.9372
M34	No	No	No	5.3422	26.863	29.1163
M20	No	No	No	8.3393	34.9725	42.4261

FIG2: 2D structure and interaction of functional groups of cocrystalclorobiocinwithamino acids of DNA GYRASE (PDB ID : 1KZN).

FIG3: 3D structure and interaction of cocrystalClorobiocin at the active site of DNA GYRASE (PDB ID : 1KZN).

FIG4: 2D structure and interaction of 2-{[3-(diphenoxyphosphoryl(-1,2,3,4-tetrahydropyridin-1-yl amino}-3-(4-hydroxyphenyl) propanoic acid at the active site of DNA Gyrase (PDB ID : 1KZN).

FIG5: 3D structure and interaction of 2-{[3-(diphenoxyphosphoryl(-1,2,3,4-tetrahydropyridin-1-yl amino}-3-(4-hydroxyphenyl)propanoic acid at the active site of DNA Gyrase (PDB ID : 1KZN).

FIG6: 2D structure and interaction of 2-{[3-(diphenoxyphosphoryl(-1,2,3,4-tetrahydropyridin-1-yl amino]-3-(1H-indol-3-yl)propanoic acid at the active site of DNA Gyrase (PDB ID : 1KZN).

FIG7: 3D structure and interaction of 2-{[3-(diphenoxyphosphoryl(-1,2,3,4-tetrahydropyridin-1-yl amino]-3-(1H-indol-3-yl) propanoic acid at the active site of DNA Gyrase (PDB ID : 1KZN).

III. CONCLUSION

With the help of the extensive literature studies, we have selected DNA gyrase (PDB ID: 1KZN) as the tuberculosis target for finding out the binding effectiveness of the chemical molecules. By performing molecular docking study on various chemical molecules, we have understood that the chemical molecule M24 [2-{[3-(diphenoxyphosphoryl(-1,2,3,4-tetrahydropyridin-1-ylamino]-3(1H-indol-3-yl) propanoicacid] and molecule M18 [2{[3 (diphenoxyphosphory] (1,2,3,4-tetrahydropyridin-1yl amino}-3-(4hydroxyphenyl) propanoic acid] were found to have good binding energy (kcal/mol) and hence good binding affinity against the target DNA GYRASE. This indicates that the compounds with substitutes in diphenylphosphonate chain having amino acid substitutes will have good interaction with the target DNA GYRASE. In future, designing of the chemical constituents having the pharmacophore similar to cyclic diphenylphosphonates or their derivatives with varying substituents in different position will be a good drug for anti-tubercular activity. This study will be the basement support for the synthesis of more substituted compounds or molecule with similar structure towards the tuberculosis therapy.

ACKNOWLEDGEMENT

We would like to specially thank Rajiv Gandhi University of Health Sciences in Bangalore, Karnataka-India for providing the Undergraduate Students Research Fund for carrying out this project.

LIST OF ABBREVIATIONS

DNA: Deoxyribonucleic acid ASN: Asparagine ASP: Aspartic acid ARG: Arginine PRO: Proline ILE: Isoleucine VAL: Valine ALA: Alanine GLU: Glutamic Acid PDB: Protein Data Bank

REFERENCES

- [1]. Brief history of tuberculosis .(http://www.umdnj.edu/~ntbcweb/histor y.htm, accessed on 1 March 2010). [Google Scholar]
- [2]. NHS Inform. Available Online https://www.nhsinform.scot/illnesses-andconditions/infections-andpoisoning/tuberculosis-tb.
- [3]. World Health Organization (WHO). FactSheet. 2018. Available online: https://www.who.int/news-room/factsheets/detail/antibiotic-resistance (accessed on 20 August2020).

- [4]. Kanehisa M, Goto S, Hattori M, KinoshitaKF, Itoh M, Kawashima S, Katayama T,Araki M, HiraKawa M: From genomics tochemical genomics: new developments inKEGG. Nucleic Acids Res. 2006, 34: D354-D357.
- [5]. (Deweese et al., 2008; Deweese and Osheroff, 2009; Forterre and Gadelle, 2009; Vos et al., 2011; Chen et al., 2013; Ashley and Osheroff, 2019).
- [6]. Esha D. Dalvie, Neil Osheroff, in Encyclopedia of Biological Chemistry (Third Edition), 2021
- [7]. Ferrero, L.; Cameron, B.; Manse, B.; Lagneaux, D.; Crouzet, J.; Famechon, A.; Blanche, F. Mol. Microbiol., 1994, 13, 641.
- [8]. Xuan-Yu Meng,Hong-Xing Zhang, Mihaly Mezei, and Meng Cui Molecular Docking: A powerful approach drug for structure-based discovery, CurrComput Aided Drug Des. 2011 Jun 1; 7(2): 146-157.doi: 10.2174/157340911795677602.
- [9]. Neveenmohamedsaleh, Yasmine S. Moemen, Sara H. MohamedExperimental and Molecular Docking Studies of Cyclic DiphenylPhosphonates as DNA Gyrase Inhibitors for Fluoroquinolone-Resistant Pathogens.January 2022.<u>Antibiotics</u> 11(1):53 DOI:<u>10.3390/antibiotics11010053</u>.
- [10]. Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screeningfor drug discovery: methods and

applications. Nature Reviews, 2004; 3(11): 935–49.

- [11]. Mostashari-Rad T, Arian R, Mehridehnavi A, Fassihi A, Ghasemi F. Study of CXCR4
- [12]. chemokine receptor inhibitors using QSPR and molecular docking
- [13]. methodologies. Journal of Theoretical and Computational Chemistry, 2019; 178(4).
- [14]. Suresh PS, Kumar A, Kumar R, Singh VP. An in silico [correction of insilico] approach
- [15]. to bioremediation: laccase as a case study. Journal of Molecular Graphics & Modelling,
- [16]. 2008; 26(5): 845–9.
- [17]. Basharat Z, Yasmin A, Bibi M. Implications of Molecular Docking Assay for
- [18]. Bioremediation. Data Analytics in Medicine, 2020; 1556–1577.
- [19]. PerkinElmer Informatics, Inc., USA.
- [20]. Avinash Kumar, Chakrawarti Prasun, Ekta Rathi, Maya S. Nair, Suvarna G KinIdentification of Potential DNA Gyrase Inhibitors: Virtual Screening, Extra-Precision Docking and Molecular Dynamics Simulation Study, 2022. https://doi.org/10.1101/2022.11.06.515362
- [21]. AshishAnand,KishorkumarSindogi,Shesha giri R Dixit,Richa P. Shetty.Comparative Investigation on the Crystal Structures, Hirshfeld Surface Analysis, Antitubercular Assays, and Molecular Docking of Regioisomeric 1,2,3- Triazoles